👤

What is the equation of the circle with center at (-3, 6) and diameter of 18 units? ​?​

Sagot :

✒️CIRCLE EQUATION

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \large \:\: \rm (x+3)^2 + (y-6)^2 = 81 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

The equation of the circle in standard form is written as:

  • [tex] (x-h)^2 + (y-k)^2 = r^2 [/tex]

Where (h,k) is the center and r is the radius. Substitute the given center.

  • [tex] \big[x-(\text-3)\big]^2 + (y-6)^2 = r^2 [/tex]

  • [tex] (x+3)^2 + (y-6)^2 = r^2 [/tex]

Get the radius. If the diameter is 18 units long, the radius must be 9 units.

  • [tex] (x+3)^2 + (y-6)^2 = 9^2 [/tex]

  • [tex] (x+3)^2 + (y-6)^2 = 81 [/tex]

Therefore, the equation of the circle in standard form is (x+3)² + (y-6)² = 81

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ