Sagot :
[tex]\huge{\underline{\boxed{{\pmb{\sf{ \: TRAPEZIUM \: }}}}}}[/tex]
ββββββββββββββββββββββββββββ
Answer #1: [tex]\boxed{\sf{48 \: m^2}}[/tex]
Answer #2: [tex]\boxed{\sf{4 \: cm}}[/tex]
SOLUTION:
#1.
Β» Given that,
The length of the first side,
- a = 5 meter
Length of the second side,
- b = 7 meter
Distance between the parallel sides,
- d = 8 meter
Β» We know the area is:
- [tex]\sf =\frac{1}{2} = sum \; of \; parallel [/tex]
- [tex]\sf sides = distance \: between \: parallel \: sides[/tex]
- [tex]\sf =\frac{1}{2} \times (a+b) \times d[/tex]
- [tex]\sf =\frac{1}{2} \times (5 + 7) \times 8[/tex]
- [tex]\sf =\frac{1}{2} \times 12 \times 8[/tex]
- [tex]\sf = 48 \: m^2[/tex]
ββββββββββββββββββββββββββββ
#2.
Β» Given that,
The length of the first side,
- a = 3 cm
The length of the second side,
- b = 7 cm
Distance between the parallel sides,
- d = 7
Β» Area A of the trapezium is:
- [tex]\sf A = \frac{1}{2} \times (a + b) \times d[/tex]
- [tex]\sf 20 = \frac{1}{2} \times (3 + 7) \times d[/tex]
- [tex]\sf 20 = \frac{1}{2} \times 10 \times d[/tex]
- [tex]\sf 5 \times d = 20[/tex]
- [tex]\sf d = \frac{20}{5}[/tex]
- [tex]\sf d = 4 \: cm[/tex]
ββββββββββββββββββββββββββββ