👤

A ferry sets sail from an island located at (4,12) on a map. it's destination is ferry landing B at (6,2)



A Ferry Sets Sail From An Island Located At 412 On A Map Its Destination Is Ferry Landing B At 62 class=

Sagot :

✒️MATHEMATICS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex]\rm\Large\underline{PROBLEM:}[/tex]

  • A ferry sets sail from an island located at (4,12) on a map. it's destination is ferry landing B at (6,2). How far will the ferry travel if each unit on the grid is 0.5 kilometers?

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex]\rm\Large\underline{SOLUTION:}[/tex]

» Calculate the distance between (4, 12) and (6, 2) use the distance formula:

  • [tex]d = \sqrt{(x_2 - x_1) {}^{2} + (y_2 - y_1) {}^{2} } [/tex]
  • [tex]d = \sqrt{(6 - 4) {}^{2} + (2 - 12) {}^{2} } [/tex]
  • [tex]d = \sqrt{4 + 100} [/tex]
  • [tex]d = \sqrt{104} [/tex]
  • [tex]d = \sqrt{4 \times 26} [/tex]
  • [tex]d = 2 \sqrt{26} \: units [/tex]

» If each unit on the grid is 0.5 Kilometers, the ferry travel for:

  • 2√26 × 0.5 km/unit
  • = [tex]{\boxed{\green{\sf{5.099\: kilometers }}}}[/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex]\rm\Large\underline{ANSWER:}[/tex]

  • If each unit on the grid is 0.5 Kilometers, the ferry travel for 5.099 Kilometers.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

hope this helps

#CarryOnLearning