Sagot :
Answer:
[tex]\frac{25\sqrt{13}}{13}[/tex]
Step-by-step explanation:
Given:
- 2x-3y-2 = 0
- (6,-5)
So ,
- a = 2 , b = -3 , c = -2
- x1 = 6 , y1 = -5
Solution:
- [tex]d = \frac{ax_1+by_1+C}{\sqrt{a²+b²}}[/tex]
- [tex]d = \frac{(2)(6)+(-3)(-5)+(-2)}{\sqrt{2²+(-3)²}}[/tex]
- [tex]d = \frac{12+15-2}{\sqrt{4+9}}[/tex]
- [tex]d = \frac{25}{\sqrt{13}}[/tex]
- [tex]d = \frac{25}{\sqrt{13}}×\frac{\sqrt{13}}{\sqrt{13}}[/tex]
- [tex]d = \frac{25\sqrt{13}}{13}[/tex]
[tex] \\ [/tex]
Therefore , the distance is [tex] \frac{25\sqrt{13}}{13}[/tex]
Answer:
✏PROBLEM:
Find the distance from the point (6,-5) to the line 2x -3y-2=0?
✏ANSWER:
[tex] \frac{25}{ \sqrt{13} } \: units [/tex]
✏SOLUTION:
IN THE PICTURE PLEASE
