1. A = P(1+rt)
= 50000(1+5%(3))
= 50000(1+0.05(3))
= 50000(1+(0.15))
= 50000(1.15)
= P75000
2. A = P(1+rt)
= 20000(1+2%(2))
= 20000(1+0.02(2))
= 20000(1+(0.04))
= 20000(1.04)
= P20800
3. A = P(1+r/n)^(nt)
= 400000(1+2%/4)^(4(12))
= 400000(1+0.02/4)^(48)
= 400000(1.005)^(48)
= P508195.66
4. A = P(1+r/n)^(nt)
50000 = 10000(1+6%/2)^(nt)
50000 = 10000(1+0.06/2)(2t)
50000 = 10000(1+1.03)^(2t)
50000 = 10000(2.03)^(2t)
50000 = (4.120)^(t)
4.12^t = 50000
t = 7.64 years
5. Let's say P = 10000
1st given
• A = P(1+rt)
= 10000(1+0.10(1.5)
= 10000(1.15)
= 11500
= P11536.89
2nd given
• A = P(1+r/n)^(nt)
= 10000(1+0.095/12)^(12(1.5)
= P11525.06
Kat should choose the 9.5% compounded monthly for 1½years
6. A = P(1+r/n)^(nt)
= 10000(1+0.02/3)^(3(5))
= P11048.04
7. F = P([1+i]^n-1)/i
= 18000([1+0.1]^12-1)/0.1
= 384917.10
= 384917.10+180000
= P564917.10
8. F = P([1+i]^n-1)/i
1000000 = P([1+0.04]^15(2)-1)/0.04
P = P17830.09
9. F = P([1+i]^n-1)/i
1000000 = P([1+0.05]^1(15) -1/0.05
P = P46342.28
10. P = P[1-(1+i)^-n/i]
= 5500[1-(1+0.12)^-(12(2))/0.12]
= P42813.73