Sagot :
Answer:
OLUTION:
Using the geometric sequence formula
\rm{S_n=A_1r^{n-1}}S
n
=A
1
r
n−1
\begin{gathered} \\ \end{gathered}
Given:
n = 5
A_1=7A
1
=7
r = 6
\begin{gathered} \\ \end{gathered}
Solving ,
\rm{S_n=A_1r^{n-1}}S
n
=A
1
r
n−1
\rm{S_5=7(6)^{5-1}}S
5
=7(6)
5−1
\rm{S_5=7(6)^{4}}S
5
=7(6)
4
\rm{S_5=7(1296)}S
5
=7(1296)
\rm{S_5=9072}S
5
=9072
Therefore, the fifth term is 9072
\begin{gathered} \\ \end{gathered}
\large{\mathcal{ANSWER:}}ANSWER:
9072