Sagot :
✏️ Arithmetic Series
[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answers:}}}}} [/tex]
- [tex] \sf S_{100} = 5050 [/tex]
- [tex] \sf S_{10} = 275 [/tex]
- [tex] \sf S_{13} = 169 [/tex]
Solutions
1.
Given that:
- the first term [tex] \sf a_1 [/tex] = 1
- the nth term [tex] \sf a_n [/tex] = 100
Solve for the common difference.
- [tex] \sf d = a_n - a_{n-1} [/tex]
- [tex] \sf d = a_2 - a_1 [/tex]
- [tex] \sf d = 2 - 1 [/tex]
- [tex] \sf d = 1 [/tex]
Find what term is 100.
- [tex] \sf a_n = a_1 + (n - 1)d [/tex]
- [tex] \sf 100 = 1 + (n - 1)1 [/tex]
- [tex] \sf 100 = 1 + n - 1 [/tex]
- [tex] \sf n = 100 [/tex]
Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{100} =\frac{100}{2} [2(1) + (100-1)1] } [/tex]
- [tex] \sf{S_{100} = 50 [2 + (99)1] } [/tex]
- [tex] \sf{S_{100} = 50 (101) } [/tex]
- [tex] {\sf \therefore S_{100} = {\boxed{\green{\sf{5050}}}}} [/tex]
2.
Given that:
- the first term [tex] \sf a_1 [/tex] = 5
- the nth term [tex] \sf a_n [/tex] = 50
Solve for the common difference.
- [tex] \sf d = a_n - a_{n-1} [/tex]
- [tex] \sf d = a_2 - a_1 [/tex]
- [tex] \sf d = 10 - 5 [/tex]
- [tex] \sf d = 5 [/tex]
Find what term is 50.
- [tex] \sf a_n = a_1 + (n - 1)d [/tex]
- [tex] \sf 50 = 5 + (n - 1)5 [/tex]
- [tex] \sf 50 = 5 + 5n - 5 [/tex]
- [tex] \sf 5n = 50 [/tex]
- [tex] \sf n = \frac{50}{5} [/tex]
- [tex] \sf n = 10 [/tex]
Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{10} =\frac{10}{2} [2(5) + (10-1)5] } [/tex]
- [tex] \sf{S_{10} = 5 [10 + (9)5] } [/tex]
- [tex] \sf{S_{10} = 5 (10 + 45) } [/tex]
- [tex] \sf{S_{10} = 5 (55) } [/tex]
- [tex] {\sf \therefore S_{10} = {\boxed{\green{\sf{275}}}}} [/tex]
3.
Given that:
- the first term [tex] \sf a_1 [/tex] = -5
- the nth term [tex] \sf a_n [/tex] = 31
Solve for the common difference.
- [tex] \sf d = a_n - a_{n-1} [/tex]
- [tex] \sf d = a_2 - a_1 [/tex]
- [tex] \sf d = -2 - (-5) [/tex]
- [tex] \sf d = 3 [/tex]
Find what term is 31.
- [tex] \sf a_n = a_1 + (n - 1)d [/tex]
- [tex] \sf 31 = -5 + (n - 1)3 [/tex]
- [tex] \sf 31 = -5 + 3n - 3 [/tex]
- [tex] \sf 31 = 3n - 8 [/tex]
- [tex] \sf 3n = 31 + 8 [/tex]
- [tex] \sf 3n = 39 [/tex]
- [tex] \sf n = \frac{39}{3} [/tex]
- [tex] \sf n = 13 [/tex]
Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{13} = \frac{13}{2} [2(-5) + (13-1)3] } [/tex]
- [tex] \sf{S_{13} = \frac{13}{2} [-10 + (12)3] } [/tex]
- [tex] \sf{S_{13} = \frac{13}{2} (-10 + 36) } [/tex]
- [tex] \sf{S_{13} = \frac{13}{2} (26) } [/tex]
- [tex] {\sf \therefore S_{13} = {\boxed{\green{\sf{169}}}}} [/tex]
[tex]{\: \:}[/tex]
[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]
#LetsLearn #BeBrainly ✌☺