👤

The vapor pressure of water at 20°C is 17.5 mmHg. What is the vapor pressure of water over a solution (Psol'n) prepared from 200 g of sucrose (C12H22O11) and 350 g water?

Molar mass of sucrose = 342 g/mol
The molar mass of water = 18 g/mol


Sagot :

✒️VAPOR PRESSURE LOWERING

[tex]\tt{\huge{\blue{Solution:}}}[/tex]

The problem wants us to calculate the vapor pressure of a solution. First, we will identify the quantities used in the problem. The quantities used are:

(Note: Sucrose is the solute and water is the solvent.)

[tex]n_{solt} =[/tex] number of moles of solute

[tex]n_{solv} =[/tex] number of moles of solvent

[tex]m_{solt} =[/tex] mass of solute

[tex]m_{solv} =[/tex] mass of solvent

[tex]\text{MM}_{solt} =[/tex] molar mass of solute

[tex]\text{MM}_{solv} =[/tex] molar mass of solvent

[tex]X_{solv} =[/tex] mole fraction of solvent

[tex]P_{solv} =[/tex] vapor pressure of pure solvent

[tex]P_{soln} =[/tex] vapor pressure of solution

Second, we will identify the given values in the problem. These are

[tex]m_{solt} =[/tex] 200 g

[tex]m_{solv} =[/tex] 350 g

[tex]\text{MM}_{solt} =[/tex] 342 g/mol

[tex]\text{MM}_{solv} =[/tex] 18 g/mol

[tex]P_{solv} =[/tex] 17.5 mmHg

Third, we need to find the number of moles of solute and solvent. These are

[tex]n_{solt} = \dfrac{m_{solt}}{\text{MM}_{solt}}[/tex]

[tex]n_{solt} = \dfrac{\text{200 g}}{\text{342 g/mol}}[/tex]

[tex]n_{solt} =[/tex] 0.585 mol

and

[tex]n_{solv} = \dfrac{m_{solv}}{\text{MW}_{solv}}[/tex]

[tex]n_{solv} = \dfrac{\text{350 g}}{\text{18 g/mol}}[/tex]

[tex]n_{solv} =[/tex] 19.444 mol

Fourth, we will find the mole fraction of solvent. The mole fraction of solvent is

[tex]X_{solv} = \dfrac{n_{solv}}{n_{solt} \: + \: n_{solv}}[/tex]

[tex]X_{solv} = \dfrac{\text{19.444 mol}}{\text{0.585 mol + 19.444 mol}}[/tex]

[tex]X_{solv} =[/tex] 0.971

Finally, we can now calculate the vapor pressure of the solution. Therefore, the vapor pressure of the solution is

[tex]P_{soln} = X_{solv}P_{solv}[/tex]

[tex]P_{soln} = (0.971)(\text{17.5 mmHg})[/tex]

[tex]\boxed{P_{soln} = \text{17.0 mmHg}}[/tex]

[tex]\\[/tex]

#CarryOnLearning

In Studier: Other Questions