Sagot :
✏️ Geometric Sequence
[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answers:}}}}} [/tex]
- [tex] \sf a_6 = 1944 [/tex]
- [tex] \sf a_{20} = -160 [/tex]
- [tex] \sf r = 5 [/tex]
Solution:
Here, we use the formula for the general term in a geometric sequence:
[tex] {\Large{\boxed{\sf{a_n = a_1 r^{n-1}}}}} [/tex]
A.
Given that:
- the first term [tex] \sf a_1 [/tex] = 256
- the common ratio [tex] \sf r [/tex] = [tex] \sf \frac{3}{2} [/tex]
- the number of terms [tex] \sf n [/tex] = 6
Solve:
- [tex] \sf{a_n = a_1 r^{n-1}} [/tex]
- [tex] \sf{a_6 = (256)(\frac{3}{2})^{6-1}} [/tex]
- [tex] \sf{a_6 = (256)(\frac{3}{2})^{5}} [/tex]
- [tex] \sf{a_6 = (256)(\frac{243}{32})} [/tex]
- [tex] {\sf \therefore a_6 = {\boxed{\green{\sf{1944}}}}} [/tex]
B.
Solution 1:
Given that:
- the fifteenth term [tex] \sf a_{15} [/tex] = 5
- the common ratio [tex] \sf r [/tex] = -2
- the number of terms [tex] \sf n [/tex] = 15
Solve for the first term.
- [tex] \sf{a_n = a_1 r^{n-1}} [/tex]
- [tex] \sf{5 = a_1 (-2)^{15-1}} [/tex]
- [tex] \sf{5 = a_1 (-2)^{14}} [/tex]
- [tex] \sf{5 = a_1 (16384)} [/tex]
- [tex] \sf{a_1 = \frac{5}{16384}} [/tex]
Solve for [tex] \sf a_{20} [/tex]. Let [tex] \sf n [/tex] = 20
- [tex] \sf{a_n = a_1 r^{n-1}} [/tex]
- [tex] \sf{a_{20} = (\frac{5}{16384}) (-2)^{20-1}} [/tex]
- [tex] \sf{a_{20} = (\frac{5}{16384}) (-2)^{19}} [/tex]
- [tex] \sf{a_{20} = (\frac{5}{16384}) (-524288)} [/tex]
- [tex] \sf{a_{20} = \frac{-2621440}{16384}} [/tex]
- [tex] {\sf \therefore a_{20} = {\boxed{\green{\sf{-160}}}}} [/tex]
Solution 2:
There are six terms between [tex] \sf a_{15} [/tex] and [tex] \sf a_{20} [/tex]. So we let [tex] \sf n [/tex] = 6
Solve:
- [tex] \sf{a_{20} = a_{15} r^{6-1}} [/tex]
- [tex] \sf{a_{20} = (5) (-2)^{5}} [/tex]
- [tex] \sf{a_{20} = (5) (-32)} [/tex]
- [tex] {\sf \therefore a_{20} = {\boxed{\green{\sf{-160}}}}} [/tex]
C.
Given that:
- the first term [tex] \sf a_1 [/tex] = 4
- the tenth term [tex] \sf a_{10} [/tex] = 7812500
- the number of terms [tex] \sf n [/tex] = 10
Solve:
- [tex] \sf{a_n = a_1 r^{n-1}} [/tex]
- [tex] \sf{7812500 = (4) r^{10-1}} [/tex]
- [tex] \sf{7812500 = (4) r^{9}} [/tex]
- [tex] \sf{r^{9} = \frac{7812500}{4}} [/tex]
- [tex] \sf{r^{9} = 1953125} [/tex]
- [tex] \sf{r = \sqrt [9] {1953125}} [/tex]
- [tex] {\sf \therefore r = {\boxed{\green{\sf{5}}}}} [/tex]
[tex]{\: \:}[/tex]
[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]
#LetsLearn #BeBrainly ✌☺