👤

Solve the following. Show your solution. Please use the example as your guide.
Example: Find the solution set of .

#1. \frac{3}{n^{2}}=\frac{n-4}{3 n^{2}}+\frac{2}{3 n^{2}} ​


Sagot :

[tex] \huge \purple {\underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

INSTRUCTIONS :

  • Solve the following. Show your solution. Please use the example as your guide.

[tex] \huge \purple {\underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

PROBLEM :

  • [tex]\boxed{ \frac{3}{n^{2}}=\frac{n-4}{3 n^{2}}+\frac{2}{3 n^{2}} }[/tex]

[tex] \huge \purple {\underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

ANSWER :

  • [tex]\tt\green{n=11}[/tex]

[tex] \huge \purple {\underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

SOLUTION :

Since variable [tex]\tt\green{n}[/tex] cannot be equal to [tex]\tt\green{0}[/tex] since division by zero is not defined. then we just have to multiply both sides of the equation by [tex]\tt\green{3n²}[/tex] , the least common multiple of [tex]\tt\green{n²}[/tex], [tex]\tt\green{3n².}[/tex]

  • [tex]\tt{3\times 3=n-4+2 }[/tex]

  • [tex]\tt{9=n-4+2 }[/tex]

  • [tex]\tt{9=n-2 }[/tex]

========

Swap sides so that all variable terms are on the left hand side.

  • [tex]\tt{n-2=9 }[/tex]

  • [tex]\tt{n=9+2 }[/tex]

  • [tex]\tt\green{n=11 }[/tex]

[tex] \huge \purple {\underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

#CarryOnLearning

[tex]\begin{gathered}\tiny\boxed{\begin{array} {} \red{\bowtie} \:\:\:\:\:\:\: \red{\bowtie}\\ \fcolorbox{color}{skyblue}{\tt{}> < }\\ \: \smile\end{array}}\end{gathered}[/tex]

Answer

[tex] \\ [/tex]

[tex] \\ [/tex]

[tex]\huge\blue{n \: = \: 11 }[/tex]

[tex] \\ [/tex]

[tex] \\ [/tex]

Explained

[tex] \\ [/tex]

We need have to multiply both sides of the equation by 3n² , the least common multiple of n²,3n².

[tex]\green{3 \: \times \: 3 \: \: = \: \: n \: - \: 4 \: + \: 2}[/tex]

[tex]\green{9 \: \: = \: \: n \: - \: 4 \: + \: 2}[/tex]

[tex]\green{9 \: \: = \: \: n \: - 2}[/tex]

[tex] \\ [/tex]

Let’s swap the edges so that all the variable terms are on the left side.

[tex] \\ [/tex]

[tex]\green{n \: \: - \: 2 \: \: = \: \: 9}[/tex]

[tex]\green{n \: \: - \: 2

9 \: + \: 2}[/tex]

[tex]\huge\green{n \: = \: 11 }[/tex]

[tex] \\ [/tex]

[tex] \\ [/tex]

#CarryOnLearning

[tex]\huge\blue{ᵁᶻᵁᴹᴬᴷᴵ ᴮᴼᴿᵁᵀᴼ}[/tex]