👤

A. 1. Insert two geometric means between 5 and 566.​

Sagot :

Answer:

Solution:

Using the Geometric Means Formula

[tex]a_{n} = a_{1}r^{n-1}[/tex]

Thus,

5, ___, ___, 566, looking for the 2nd term and the 3rd term. Now it becomes 4 terms.

Solve first the common ration using the formula above

     [tex]a_{n} = a_{1}r^{n-1}[/tex]

   566 = 5[tex]r^{3}[/tex]

566/5 = 5[tex]r^{3}[/tex]/5

   113.2= [tex]r^{3}[/tex] or

      [tex]r^{3}[/tex]  =113.2

     [tex]\sqrt[3]{r^{3} } = \sqrt[3]{113.2}[/tex]

        r   =   [tex]\sqrt[3]{113.2}[/tex]  , then

To obtain the 2nd term multiply the common ratio to the 1st term.

[tex]a_{2} =[/tex] 5([tex]\sqrt[3]{113.2}[/tex]  ) = 5[tex]\sqrt[3]{113.2}[/tex]

To obtain the 3rd term multiply the 2nd term by the common ratio

[tex]a_{3}[/tex] = (5[tex]\sqrt[3]{113.2}[/tex] )([tex]\sqrt[3]{113.2}[/tex] )

   = (5[tex]\sqrt[3]{(113.2){2} }[/tex] )

Thus,

5, 5[tex]\sqrt[3]{113.2}[/tex] , 5[tex]\sqrt[3]{(113.2)^{2} }[/tex] , 566

Thank you!

 

   

Step-by-step explanation: