👤

2. Divide using synthetic division: (x2 + 8x + 11) (x + 3)​

Sagot :

Answer:

There are four questions in your one question.

Let us take

(

B

)

(

x

3

4

x

2

2

x

+

5

)

÷

(

x

1

)

Here,

p

(

x

)

=

x

3

4

x

2

2

x

+

5

and

divisor

x

=

1

We take coefficients of

p

(

x

)

1

,

4

,

2

,

5

and set the problem as shown below.

Put zero {0} below the first number {1} and add :

1

+

0

=

1

.

1

1

...

.

.

4

...

.

.

2

...

...

5

.2

0

...

...

...

...

...

...

...

...

...

...

...

.

−−−−−−−−−−−−−−−−−−−−

...

.

1

Now multiply this {1}with divisor

(

1

)

1

×

(

1

)

=

1

and put below second number{-4} and add

4

+

1

=

3

.

1

1

...

.

.

4

...

.

.

2

...

...

.

5

0

...

...

...

.

1

...

...

...

...

...

...

...

.

−−−−−−−−−−−−−−−−−−−−−

...

.

1

...

...

.

3

...

.

.20

...

...

...

|

0

|

−−

Again repeat the process :

i

.

e

.

3

×

(

1

)

=

3

and

2

+

(

3

)

=

5

.

1

1

...

...

...

4

...

...

.

2

...

...

.

5

0

...

...

...

.

.

1

...

...

...

.

3

...

...

...

10

−−−−−−−−−−−−−−−−−−−−−−−−−

...

.

1

...

...

...

3

...

...

...

5

...

...

...

|

0

|

−−

Again ,

5

×

(

1

)

=

5

and

(

5

)

+

(

5

)

=

0

.

1

1

...

...

.

4

...

...

.

2

...

...

.

.

5

0

...

...

...

.

.

1

...

...

.

3

...

...

5

−−−−−−−−−−−−−−−−−−−−−−−

...

.

1

...

...

.

3

...

...

.

5

...

...

...

|

0

|

−−

We can see that , quotient polynomial :

q

(

x

)

=

x

2

3

x

5

and

the Remainder

=

0

Hence ,

(

x

3

4

x

2

2

x

+

5

)

=

(

x

1

)

(

x

2

3

x

5

)

+

0

Note: For

(

A

)

,

(

C

)

,

and

(

D

)

Step-by-step explanation:

welcome

View image ITSMEREALLILLY
View image ITSMEREALLILLY
View image ITSMEREALLILLY