👤

In triangle ACB, angle C is a right angle. If ∠A = 63° and a = 11 cm, find c. *

In Triangle ACB Angle C Is A Right Angle If A 63 And A 11 Cm Find C class=

Sagot :

Answer:

1.   a= 12.3cm

    [For the triangle where a ,b, c are the length of the sides and α, β, γ are the opposite angles, the law of sines: [tex]\frac{a}{sin(\alpha )} = \frac{b}{sin(\beta )} = \frac{c}{sin(γ)}\\[/tex]or γ

Hence,            a       =          c      

                 sin(∠C)               sin(∠A)

       Given:

*∠ACB= 90 [angle C is a right angle]

*a or CB= 11

*∠A= 63

Find: c

[substitute the given values, therefore..

         [tex]\frac{a}{sin(90)} = \frac{11}{sin(63)}[/tex]

[use the trigonometric trivial identity where sin(90) = 1

       [tex]\frac{a}{1} = \frac{11}{sin (63)}[/tex]      [apply rule  [tex]\frac{a}{1} = a[/tex] ]

[tex]a=\frac{11}{sin(63)}\\[/tex]

      [ Try it on your scientific calculator and you will get

  a = 12.34558 or 12.3

   

2. Evaluate

  Answer=  11/4

   

A.

[tex]3(cos30)^2 + 2(sin30)^2[/tex]

   [Get the value of cos(30) from trigonometric values table]

[tex]3 (\frac{\sqrt{3} }{2} )^2 + 2(sin30)^2[/tex]

   [To raise [tex]\frac{\sqrt{3} }{2}[/tex] to a power, raise both numerator and denominator to the     power and then divide.

[tex]3 (\frac{\sqrt{3^2} }{2^2} ) + 2(sin30)^2[/tex]

   [Then, make [tex]3 (\frac{\sqrt{3^2} }{2^2} )[/tex] as a single fraction]

[tex]\frac{3(\sqrt{3})^2}{2^2} + 2(sin30)^2[/tex]

B.

  [Get the value of sin(30) from the trigonometric values table]

[tex]\frac{3(\sqrt{3})^2}{2^2} + 2(\frac{1}{2})^2[/tex]

  [Calculate  [tex]\frac{1}{2}[/tex]  to the power of 2 to get  [tex]\frac{1}{4}[/tex] ,  then multiply it to 2 to get [tex]\frac{1}{2}[/tex] ]

[tex]\frac{3(\sqrt{3})^2 }{2^2} + \frac{1}{2}[/tex]

  [To add or subtract expressions, expand them to make their denominators the same. Least common multiple of [tex]2^{2}[/tex] and 2 is 4. Multiply [tex](\frac{1}{2}) (\frac{2}{2} )[/tex]

[tex]\frac{3(\sqrt{3})^2}{4} + \frac{2}{4}[/tex]

[Since they have the same denominator, add their numerators then copy the denominator to make them a single fraction]

[tex]\frac{3(\sqrt{3})^2+ 2}{4}[/tex]          [ the square of [tex]\sqrt{3}[/tex] is 3]

[tex]\frac{(3)(3)}{2^2} + \frac{1}{2}[/tex]        [Multiply 3 and 3 to get 9, then calculate 2^2 to get 4]

[tex]\frac{9}{4} + \frac{1}{2}[/tex]    [ add 9/4 and 1/2 to get 11/4. It is important to learn how to solve   fractions with unlike/different denominators]