Sagot :
Answer:
An arithmetic sequence is a sequence that has the property that the difference between any two consecutive terms is a constant. This constant is called the common difference. If a1 is the first term of an arithmetic sequence and d is the common difference, the sequence will be: {an}={a1,a1+d,a1+2d,a1+3d,…}
Step-by-step explanation:
Brainliest po
thanks you
[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
Question:
Determine if each sequence is arithmetic. If so, indicate the common difference.
[tex]\bold{5 \: , \: 9 \: , \: 13 \: , \: 21 \: , \: 25.}[/tex]
[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
Answer:
[tex]\bold{d=4}[/tex]
[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
Step-by-step explanation:
To determine if the sequence is arithmetic, we find the difference of the consecutive terms shown.
Find the difference of the consecutive terms.
[tex]\bold{5 \: , \: 9 \: , \: 13 \: , \: 17 \: , \: 21 \: , \: 25.}[/tex]
[tex]\bold{9-5 \: \: 13-9 \: \: 17-13 \: \: 21-17 \: \: 25-21}[/tex]
[tex]\bold{ \: \: \: 4 \: \: \: 4 \: \: \: 4 \: \: \: 4 \: \: \: 4}[/tex]
The sequence is arithmetic. The common difference is [tex]\bold\orange{d=4}[/tex].
[tex]\overline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }[/tex]
[tex]{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}}[/tex][tex]\mathfrak{HikariSquad}[/tex]
#CarryOnLearning