👤

Kent is making a rectangular decor. The width is one-twelfth of the length. Find the dimensions of the decor if the area is 1500 square inches.


Sagot :

[tex] \large\underline \bold{{SOLUTION}}[/tex]

[tex]\textrm{\underline{Given}}[/tex]

[tex]\rm{L = x}[/tex]

[tex]\rm{W = \frac{x}{5} }[/tex]

[tex]\rm{1500 = LW}[/tex]

[tex]\textrm{\underline{Solving the System of Linear Equation}}[/tex][tex]\textrm{•By Substitution}[/tex]

[tex]\longmapsto\sf{1500 = LW}[/tex]

[tex]\longmapsto\sf{1500 = x(\frac{x}{5})}[/tex]

[tex]\longmapsto\sf{1500 = \frac{x²}{5}}[/tex]

[tex]\longmapsto\sf{1500(5) = x²}[/tex]

[tex]\longmapsto\sf{ 7500 = x²}[/tex]

[tex]\longmapsto \sf{\sqrt{7500} = \sqrt{x²}}[/tex]

[tex]\longmapsto \sf{50\sqrt{3} = x}[/tex]

[tex]\textrm{Substitute the value of x to the dimensions}[/tex]

[tex]\rm{L=x \implies \boxed{50\sqrt{3}}}[/tex]

[tex]\rm{W=\frac{x}{5} \implies \frac{50\sqrt{3}}{5} = \boxed{10\sqrt{3}}}[/tex]

[tex] \large\underline{ \bold{ANSWER}}[/tex]

  • [tex]\textrm{\small{The dimensions are $50\sqrt{3}in$ and $10\sqrt{3}in$}}[/tex]