👤

Complete the crossword polynomial by finding the indicated products below.
A box may contain one term or one operation symbol only.
Across
1. (x + 2)(x3 + 2x - 3)
2. (2x + 3)(x - 5)
6. (x3 + 5)(x2 + 2x + 3)
8. (11x + 3)(x - 4)
Down
1. (x2 + 3x - 5)(x2 + 2x - 3)
3. (x2 + 2x)(x3 + x)
5. (x3 + 5x)(x - x)
6. (x3 + 6)(x2 - 3)
7. (3x + 5)(x2 + 2x - 1)
6​


Complete The Crossword Polynomial By Finding The Indicated Products BelowA Box May Contain One Term Or One Operation Symbol OnlyAcross1 X 2x3 2x 32 2x 3x 56 X3 class=

Sagot :

Answer:

Across

1) [tex]x^{4}[/tex] + 2[tex]x^{3}[/tex] + 2[tex]x^{2}[/tex] + x - 6

2) 2[tex]x^{2}[/tex] - 7x - 15

6) [tex]x^{5}[/tex] + 2[tex]x^{4}[/tex] + 3[tex]x^{3}[/tex] + 5[tex]x^{2}[/tex] + 10x + 15

8) 11[tex]x^{2}[/tex] - 41x - 12

Down

1) [tex]x^{4}[/tex] + 5[tex]x^{3}[/tex] - 2[tex]x^{2}[/tex] - 19x + 15

3) [tex]x^{5}[/tex] + 2[tex]x^{4}[/tex] + [tex]x^{3}[/tex] + 2[tex]x^{2}[/tex]

5) [tex]x^{6}[/tex] + 4[tex]x^{4}[/tex] - 5[tex]x^{2}[/tex]

6) [tex]x^{5}[/tex] - 3[tex]x^{3}[/tex] + 6[tex]x^{2}[/tex] - 18

7) 3[tex]x^{3}[/tex] + 11[tex]x^{2}[/tex] + 7x - 5

Step-by-step explanation:

Across

1) ( x + 2 ) ( [tex]x^{3}[/tex] + 2x - 3 )

= [tex]x^{4}[/tex] + 2[tex]x^{2}[/tex] - 3x + 2[tex]x^{3}[/tex] + 4x - 6  Combine like terms.

= [tex]x^{4}[/tex] + 2[tex]x^{2}[/tex] + x + 2[tex]x^{3}[/tex] - 6  Arrange terms.

=  [tex]x^{4}[/tex] + 2[tex]x^{3}[/tex] + 2[tex]x^{2}[/tex] + x - 6

2) ( 2x + 3 ) ( x - 5 )

= 2[tex]x^{2}[/tex] - 10x + 3x - 15  Combine like terms.

= 2[tex]x^{2}[/tex] - 7x - 15

6) ( [tex]x^{3}[/tex] + 5 ) ( [tex]x^{2}[/tex] + 2x + 3 )

= [tex]x^{5}[/tex] + 2[tex]x^{4}[/tex] + 3[tex]x^{3}[/tex] + 5[tex]x^{2}[/tex] + 10x + 15

8) ( 11x + 3 ) ( x - 4 )

= 11[tex]x^{2}[/tex] - 44x + 3x - 12  Combine like terms.

= 11[tex]x^{2}[/tex] - 41x - 12

Down

1) ( [tex]x^{2}[/tex] + 3x -  5) ( [tex]x^{2}[/tex] + 2x - 3 )

=  [tex]x^{4}[/tex] + 2[tex]x^{3}[/tex] - 3[tex]x^{2}[/tex] + 3[tex]x^{3}[/tex] + 6[tex]x^{2}[/tex] - 9x - 5[tex]x^{2}[/tex] - 10x + 15  Combine like terms.

= [tex]x^{4}[/tex] + 5[tex]x^{3}[/tex] - 2[tex]x^{2}[/tex] - 19x + 15

3) ( [tex]x^{2}[/tex] + 2x ) ( [tex]x^{3}[/tex]  + x )

= [tex]x^{5}[/tex] + [tex]x^{3}[/tex] + 2[tex]x^{4}[/tex] + 2[tex]x^{2}[/tex]  Arrange terms.

=  [tex]x^{5}[/tex] + 2[tex]x^{4}[/tex] + [tex]x^{3}[/tex] + 2[tex]x^{2}[/tex]

5) ( [tex]x^{3}[/tex]  + 5x ) ( [tex]x^{3}[/tex]  - x )

= [tex]x^{6}[/tex] - [tex]x^{4}[/tex] + 5[tex]x^{4}[/tex] - 5[tex]x^{2}[/tex]  Combine like terms.

= [tex]x^{6}[/tex] + 4[tex]x^{4}[/tex] - 5[tex]x^{2}[/tex]

6) ( [tex]x^{3}[/tex]  + 6 ) ( [tex]x^{2}[/tex] - 3 )

=  [tex]x^{5}[/tex] - 3[tex]x^{3}[/tex] + 6[tex]x^{2}[/tex] - 18

7) ( 3x + 5 ) ( [tex]x^{2}[/tex] + 2x - 1 )

= 3[tex]x^{3}[/tex] + 6[tex]x^{2}[/tex] - 3x + 5[tex]x^{2}[/tex] + 10x - 5  Combine like terms.

= 3[tex]x^{3}[/tex] + 11[tex]x^{2}[/tex] + 7x - 5

Hope this helps.

#LearnWithBrainly