Sagot :
FINDING DISTANCE BETWEEN TWO POINTS
[tex] \: [/tex]
[tex]======================[/tex]
[tex]{\underline{\huge \mathbb{D} {\large \mathrm {IRECTION : }}}}[/tex]
[tex] \quad [/tex] Find the distance between the given two points
[tex] \: [/tex]
[tex] \: [/tex]
[tex]\orange{\underline{\qquad\qquad\qquad\qquad \qquad \qquad \qquad \qquad \qquad }}[/tex]
[tex]{\underline{\huge \mathbb{A} {\large \mathrm {NSWERS : }}}}[/tex]
- (2,3) and (-1, 4) = [tex] \boxed{\green{\; \sqrt{2\; } \;}} [/tex]
- (-2,-2) and (0,-4) = [tex] \boxed{\green{\; 0 \;}} [/tex]
[tex]\orange{\underline{\qquad\qquad\qquad\qquad \qquad \qquad \qquad \qquad \qquad }}[/tex]
[tex]{\underline{\huge \mathbb{S} {\large \mathrm {OLUTIONS : }}}}[/tex]
[tex]\red {\mathcal{FORMULA:}}[/tex]
- [tex]{\boxed{\sf{\blue{d = \sqrt{{(x_2 \; - \; x_1)}^{2}+{(y_2 \; - \; y_1)}^{2}}}}}}[/tex]
[tex] \: [/tex]
—————————————————
[tex] \: [/tex]
[tex]\red {\mathcal{GIVENS \; FOR \; \# 1:}}[/tex]
- (2, 3)
- (1, 4)
[tex] \: [/tex]
[tex] [Sol:] [/tex]
- [tex]d = \sqrt{{(x_2 \; - \; x_1)}^{2}+{(y_2 \; - \; y_1)}^{2} \; } [/tex]
- [tex] \quad = \sqrt{{(1 \; - \; 2)}^{2}+{(4\; - \;3)}^{2} \;} [/tex]
- [tex] \quad = \sqrt{{(-1)}^{2}\; + \;{(1)}^{2} \; } [/tex]
- [tex] \quad = \sqrt{1 \; +\; 1 \;} [/tex]
- [tex] \quad = {\boxed{\green{\sqrt{2 \;}\rm{\; units \;}}}} [/tex]
[tex] \: [/tex]
[tex]\red {\mathcal{FINAL \; ANSWER:}}[/tex]
• Thus, the distance between point (2, 3) and point (-1, 4) is [tex]{\underline{ \sqrt{2}}}[/tex] units.
[tex] \: [/tex]
—————————————————
[tex] \: [/tex]
[tex]\red {\mathcal{GIVENS \; FOR \; \# 2:}}[/tex]
- (-2, -2)
- (0, -4)
[tex] \: [/tex]
[tex] [Sol:] [/tex]
- [tex]d = \sqrt{{(x_2 \; - \; x_1)}^{2}+{(y_2 \; - \; y_1)}^{2} \; } [/tex]
- [tex] \quad = \sqrt{{[0 \; - \; (-2)]}^{2}+{[(-4) \; - \; (-2)]}^{2} \;} [/tex]
- [tex] \quad = \sqrt{{(2)}^{2}\; + \;{(-2)}^{2} \; } [/tex]
- [tex] \quad = \sqrt{4 \; +\; 4 \;} [/tex]
- [tex] \quad = \sqrt{8 \;} [/tex]
- [tex] \quad = {\boxed{\green{\; 2 \sqrt{2 \;} \rm{units}\; }}} [/tex]
[tex] \: [/tex]
[tex]\red {\mathcal{FINAL \; ANSWER:}}[/tex]
• Thus, the distance between point (-2, -2) and point (0, -4) is [tex] \underline{2 \sqrt{2}} [/tex].
[tex] \: [/tex]
[tex]======================[/tex]
[tex] - \large\sf\copyright \: \large\tt{Hisoki}[/tex]