👤

simplify each expression. Assume that no dizision is
zero.

4.
[tex](9 {n}^{ - 1} {p}^{ - 2} )(5 {n}^{3} {p}^{5} )[/tex]
5.
[tex] {s}^{8} \times {s}^{7} [/tex]
9.
[tex] \frac{ {a}^{3} }{ {a}^{8} } [/tex]
10.
[tex]( \frac{ {x}^{2}{y}}{x {y}^{2} } )[/tex]



Sagot :

Answer:

4. [tex]45n^2p^3[/tex]

5. [tex]s^{15}[/tex]

9. [tex]\frac{1}{a^5}[/tex] or [tex]a^{-5}[/tex]

10. [tex]\frac{x}{y}[/tex]

Step-by-step explanation:

4. Applying multiplication rule of Laws of Exponents:

[tex]a^{x} * a^{y} = a^{X+Y}[/tex]

[tex](9)(5) = 45\\n^{(-1+3)} = n^2\\p^{(-2+5)} = p^3\\45n^2p^3[/tex]

5. Applying same rule in number 4

[tex]a^{x} * a^{y} = a^{X+Y}[/tex]

[tex]s^{8+7} =s^{15}[/tex]

9. Applying Division rule of Laws of Exponents:

[tex]\frac{a^{X} }{a^{y} } = a^{x-y}\\\\a^{3-8} = a^-5[/tex] can be also expressed as [tex]\frac{1}{a^{5} }[/tex]

10. Applying same rule in number 9

[tex]\frac{a^{X} }{a^{y} } = a^{x-y}\\[/tex]

[tex]x^{2-1} y^{1-2} \\x^{1} y^{-1} \\[/tex]can also be expresses as [tex]\frac{x}{y}[/tex]

Simplify:

4.) [tex]\orange{\boxed{\tt{=\:45n²p³}}}[/tex]

5.) [tex]\orange{\boxed{\tt{s^15}}}[/tex]

9.) [tex]\color{orange}{\boxed{\frac{1}{a^5}}{}}[/tex]

10.) [tex]\color{orange}{\boxed{\frac{x}{y}}{}}[/tex]

#CarryOnLearning