Sagot :
Answer:
27[tex]k^{3}[/tex]-162[tex]k^{2}[/tex]+324k-216
Step-by-step explanation:
CUBE OF A BINOMIAL
Equation: [tex]{\tt{(3k-6)^{3}}}[/tex]
Formula: [tex](a-b)^{3}[/tex]
[tex]\tt{a^{3}-3(a)^{2}(b)+3(a)(b)^{2}-b^{3}}[/tex]
Where,
[tex]{\tt{a=3k}}\\{\tt{b=6}}[/tex]
Solution:
[tex]{\tt{(3k-6)^{3}}}\\{\tt{3k^{3}-3(3k)^{2}(6)+3(3k)(6)^{2}-6^{3}}}\\{\boxed{\tt{27k^{3}-162k^{2}+324k-216}}}[/tex]
Answer:
[tex]{\green{\boxed{\green{\huge{\boxed{\sf{27k^{3}-162k^{2}+324k-216}}}}}}}[/tex]
[tex]{\blue{\boxed{ItzyMidzy:))}}}[/tex]
#CarryOnLearning