👤

find the products using special products

1. (10 - h)³
2. (2x + 3y) (3y + 2x)
3. (s - 8t) (s + 8t)
4. (15n - m) (15n - m) ​


Sagot :

Answer:

1. [tex]-h^3+30h^2-300h+1000[/tex]

2. [tex]4x^2+12xy+9y^2[/tex]

3. [tex]s^2-64t^2[/tex]

4. [tex](15n-m)(15n-m)[/tex]

Step-by-step explanation:

1. [tex](10-h)^3[/tex]

[tex]=(10-h)*(10-h)*(10-h)[/tex]

[tex]=(10+-h)(h^2+-20h+100)[/tex]

[tex]=(10)(h^2)+(10)(-20h)+(10)(100)+(-h)(h^2)+(-h)(-20h)+(-h)(100)[/tex]

[tex]=10h^2-200h+1000-h^3+20h^2-100h[/tex]

[tex]=-h^3+30h^2-300h+1000[/tex]

2. [tex](2x+3y)(3y+2x)[/tex]

[tex]=(2x)(3y)+(2x)(2x)+(3y)(3y)+(3y)(2x)[/tex]

[tex]=6xy+4x^2+9y^2+6xy[/tex]

[tex]4x^2+12xy+9y^2[/tex]

3. [tex](s-8t)(s+8t)[/tex]

[tex]=(s)(s)+(s)(8t)+(-8t)(s)+(-8t)(8t)[/tex]

[tex]=s2+8st-8st-64t^2[/tex]

[tex]=s^2-64t^2[/tex]

4. [tex](15n - m) (15n- m)[/tex]

[tex]=(15n+-m)(15n+-m)[/tex]

[tex]=(15n)(15n)+(15n)(-m)+(-m)(15n)+(-m)(-m)[/tex]

[tex]=225n^2-15mn-15mn+m^2[/tex]

[tex]=m^2-30mn+225n^2[/tex]