👤

Solve the following, then state if it's True or False:
[tex]1.)\int\limits^4_{2} {x} } \, dx\ \textless \ \int\limits^{6}_{3} {x^{2} } \, dx \\[/tex]


Sagot :

Answer:

6 < 63, TRUE

Step-by-step explanation:

[tex]\sf \int\limits^4_2 {x} \, dx < \int\limits^6_3 {x^2} \, dx[/tex]

[tex]\implies \sf \big[\frac{x^{1+1}}{1+1}\big]_{2}^{4} < \big[\frac{x^{2+1}}{2+1}\big]_{3}^{6}[/tex]

[tex]\implies \sf \big[\frac{x^2}{2}\big]_{2}^{4}<\big[\frac{x^3}{3}\big]_{3}^{6}[/tex]

[tex]\implies \sf \big(\frac{4^2}{2} -\frac{2^2}{2}\big) < \big(\frac{6^3}{3}-\frac{3^3}{3}\big)[/tex]

[tex]\implies \sf \big(\frac{16}{2}-\frac{4}{2}\big)<\big(\frac{216}{3}-\frac{27}{3}\big)[/tex]

[tex]\implies \sf (8 - 2) < (72-9)[/tex]

[tex]\implies \sf 6 < 63[/tex]

Hence, the inequality is TRUE.

#CarryOnLearning