👤

The angle in a circle is divided into 5 parts with measures x°, 3x°, 3x°, 4x°, 5x°. What are the measures of each angle? Explain how you arrived at your answers.

Sagot :

Answer:

The total angle of a circle is 360°.

Solve for x;

[tex]x + 3x + 3x + 4x + 5x = 360 \\ 16x = 360 \\ x = 22.5[/tex]

Therefore,

[tex]x = {22.5}^{o} \\ 3x = 3 \times 22.5 = {67.5}^{o} \\ 3x = 3 \times 22.5 = {67.5}^{o} \\ 4x = 4 \times 22.5 = {90}^{o} \\ 5x = 5 \times 22.5 = {112.5}^{o} [/tex]

CIRCLE

==============================

Solve:

A full orbit or a full angle of a circle 360° in a measure of each number, find the value of x as the given.

[tex] \implies\sf x° + 3x° + 3x° + 4x° + 5x° = 360°[/tex]

[tex] \implies \sf \large 16x° = 360°[/tex]

[tex] \implies\sf \large \frac{ \cancel{16}x°}{ \cancel{16} \degree} = \frac{360 \degree}{ 16 \degree} \\ [/tex]

[tex] \implies \sf \large \therefore \: x = 22.5[/tex]

[tex] \: [/tex]

Now substitute x as 22.5 to find each measure and check.

[tex] \large \begin{cases} \begin{align} \sf \: 22.5 \degree \\ \sf \: (3)22.5 \degree \\ \sf \: (3)22.5 \degree \\ \sf \: (4)22.5 \degree\\ \sf \: (5)22.5 \degree \end{align} \end{cases} \: \: \begin{align} = \\ = \\ = \\ = \\ = \end{align} \: \: \begin{align} \sf \: \orange{22.5 \degree}\\ \sf \: \orange{67.5 \degree} \\ \sf \: \orange{67.5 \degree} \\ \sf \: \orange{90.0 \degree} \\ \sf \: \orange{112.5 \degree} \end{align}[/tex]

[tex] \: [/tex]

Final Answer:

[tex] \large\sf \underline{ \underline{\orange{22.5°,67.5°,67.5°,90° \: and \: 112.5°}}}[/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ