Sagot :
Answer:
The equation of the line in slope-intercept form:
- [tex]\LARGE\text{\boldsymbol{y=3x-13}}[/tex]
The equation of the line in standard form:
- [tex]\LARGE\text{\boldsymbol{3x-y=13}}[/tex]
Step-by-step explanation:
For the y-intercept (b)
Given: [tex](3,-4)[/tex], [tex]m=3[/tex]
Find: [tex]b=?[/tex]
Formula: [tex]y=mx+b[/tex]
Solution:
[tex]y=mx+b\\-4=3(3)+b\\-4=9+b\\-4-9=b\\\boldsymbol{b=-13}[/tex]
Equation of the line in slope-intercept form:
Given: [tex]m=3[/tex], [tex]b=-13[/tex]
Solution:
[tex]y=mx+b\\\boxed{\boldsymbol{y=3x-13}}[/tex]
Equation of the line in standard form:
Given: [tex]m=3[/tex], [tex]b=-13[/tex]
Solution:
[tex]y=mx+b\\y=3x-13\\-3x+y=-13\\\frac{-3x}{-1}+\frac{y}{-1}=\frac{-13}{-1}\\\boxed{\boldsymbol{3x-y=13}}[/tex]
#CarryOnLearning