Sagot :
Answer:
The equation of the line in slope-intercept form:
- [tex]\LARGE\text{\boldsymbol{\underline{y=-x+1}}}[/tex]
The equation of the line in standard form:
- [tex]\LARGE\text{\boldsymbol{\underline{x+y=1}}}[/tex]
Step-by-step explanation:
Given: [tex](3,-2)[/tex], [tex](-3,4)[/tex]
Solution for the slope (m):
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{4-(-2)}{-3-3}[/tex]
[tex]m=\frac{4+2}{-6}[/tex]
[tex]m=\frac{6}{-6}[/tex]
[tex]\boldsymbol{m=-1}[/tex]
Solution for y-intercept (b):
[tex]m=-1[/tex], [tex](3,-2)[/tex]
[tex]y=mx+b[/tex]
[tex]-2=(-1)(3)+b[/tex]
[tex]-2=-3+b[/tex]
[tex]-2+3=b[/tex]
[tex]\boldsymbol{1=b}[/tex]
Equation of the line in slope-intercept form:
[tex]y=mx+b[/tex]
[tex]y=(-1)x+1[/tex]
[tex]\LARGE\text{\boxed{\boldsymbol{y=-x+1}}}[/tex]
Equation of the line in standard form:
[tex]y=mx+b[/tex]
[tex]y=(-1)x+1[/tex]
[tex]y=-x+1[/tex]
[tex]\LARGE\text{\boxed{\boldsymbol{x+y=1}}}[/tex]
#CarryOnLearning