B. Write 3 equivalent ratio of the following
β

Answer:
A ratio shows the comparison of quantities. It describes a part-to-part or a part-to-whole comparison. It can be written in three ways: fraction form, colon form and word form. Ratios that have the same values are called equivalent ratio. You can find the equivalent ratio by multiplying or dividing both quantities by the same number.
Solution:
Let us now find the equivalent ratios of the given ratios above by multiplying or dividing.
1) β2β4β = β1β2, β4β8, β6β12
β2Γ·2 / 4Γ·2 = 1β2
2Γ2 / 4Γ2 = 4β8
2Γ3 / 4Γ3 = 6β12
2) 5β10 = 1β2, 20β40, 30β60
5Γ·5 / 10Γ·5 = 1β2
5Γ4 / 10Γ4 = 20β40
5Γ6 / 10Γ6 = 30β60
3) 4β5 = 8β10, 16β20, 28β35
4Γ2 / 5Γ2 = 8β10
4Γ4 / 5Γ4 = 16β20
4Γ7 / 5Γ7 = 28β35
4) 3β9 = 1β3, 9β27, 21β63
β3Γ·3 / 9Γ·3 = 1β3
3Γ3 / 9Γ3 = 9β27
3Γ7 / 9Γ7 = 21β63
5) 2β5 = 4β10, 8β20, 14β35
2Γ2 / 5Γ2 = 4β10
2Γ4 / 5Γ4 = 8β20
2Γ7 / 5Γ7 = 14β35
6) 8β10 = 4β5, 24β30, 56β70
β8Γ·2 / 10Γ·2 = 4β5
8Γ3 / 10Γ3 = 24β30
8Γ7 / 10Γ7 = 56β70
7) 3β15 = 1β5, 6β30, 12β60
β3Γ·3 / 15Γ·3 = 1β5
3Γ2 / 15Γ2 = 6β30
3Γ4 / 15Γ4 = 12β60
8) 2β8 = 1β4, 6β24, 14β56
β2Γ·2 / 8Γ·2 = 1β4
2Γ3 / 8Γ3 = 6β24
2Γ7 / 8Γ7 = 14β56
9) 3β7 = 6β14, 12β28, 18β42
3Γ2 / 7Γ2 = 6β14
3Γ4 / 7Γ4 = 12β28
3Γ6 / 7Γ6 = 18β42
10) 6β8 = 3β4, 24β32, 36β48
6Γ·2 / 8Γ·2 = 3β4
6Γ4 / 8Γ4 = 24β32
6Γ6 / 8Γ6 = 36β48